Analysis Beispiele

Berechne das Integral Integral von 0 bis a^(2/5) über x^4 Quadratwurzel von a^2-x^5 nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Subtrahiere von .
Schritt 1.2
Setze die untere Grenze für in ein.
Schritt 1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.3.1.2
Mutltipliziere mit .
Schritt 1.3.2
Addiere und .
Schritt 1.4
Setze die obere Grenze für in ein.
Schritt 1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.5.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.1.2.2
Forme den Ausdruck um.
Schritt 1.5.2
Subtrahiere von .
Schritt 1.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 1.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Benutze , um als neu zu schreiben.
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Berechne bei und .
Schritt 7.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Schreibe als um.
Schritt 7.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 7.2.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.3.2
Forme den Ausdruck um.
Schritt 7.2.4
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 7.2.5
Mutltipliziere mit .
Schritt 7.2.6
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.6.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 7.2.6.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.6.2.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.6.2.2
Forme den Ausdruck um.
Schritt 7.2.7
Subtrahiere von .
Schritt 7.2.8
Kombiniere und .
Schritt 7.2.9
Mutltipliziere mit .
Schritt 7.2.10
Mutltipliziere mit .
Schritt 7.2.11
Mutltipliziere mit .
Schritt 7.2.12
Mutltipliziere mit .
Schritt 7.2.13
Bringe auf die linke Seite von .
Schritt 8
Stelle die Terme um.
Schritt 9
Kombiniere und .