Analysis Beispiele

Berechne den Grenzwert Grenzwert von (e^x-cos(x)-2x)/(x^2-2x), wenn x gegen 0 geht
Schritt 1
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.2
Bringe den Grenzwert in den Exponenten.
Schritt 1.1.2.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 1.1.2.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.1.2.5
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.5.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.5.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.5.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.6
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.6.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.6.1.1
Alles, was mit potenziert wird, ist .
Schritt 1.1.2.6.1.2
Der genau Wert von ist .
Schritt 1.1.2.6.1.3
Mutltipliziere mit .
Schritt 1.1.2.6.1.4
Mutltipliziere mit .
Schritt 1.1.2.6.2
Subtrahiere von .
Schritt 1.1.2.6.3
Addiere und .
Schritt 1.1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.3.2
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 1.1.3.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.1.3.4
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.4.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.3.4.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.3.5
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.5.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.1.3.5.1.2
Mutltipliziere mit .
Schritt 1.1.3.5.2
Addiere und .
Schritt 1.1.3.5.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.3.6
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.4.2
Die Ableitung von nach ist .
Schritt 1.3.4.3
Mutltipliziere mit .
Schritt 1.3.4.4
Mutltipliziere mit .
Schritt 1.3.5
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.5.3
Mutltipliziere mit .
Schritt 1.3.6
Stelle die Terme um.
Schritt 1.3.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.9
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.9.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.9.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.9.3
Mutltipliziere mit .
Schritt 2
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.3
Bringe den Grenzwert in den Exponenten.
Schritt 2.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.5
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 2.6
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.7
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.8
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Alles, was mit potenziert wird, ist .
Schritt 4.1.2
Mutltipliziere mit .
Schritt 4.1.3
Der genau Wert von ist .
Schritt 4.1.4
Addiere und .
Schritt 4.1.5
Subtrahiere von .
Schritt 4.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Mutltipliziere mit .
Schritt 4.2.2
Mutltipliziere mit .
Schritt 4.2.3
Subtrahiere von .
Schritt 4.3
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: