Analysis Beispiele

Ermittle die Wendepunkte f(x)=1/4x^4+5x^3+75/2x^2
Schritt 1
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Kombiniere und .
Schritt 1.1.2.4
Kombiniere und .
Schritt 1.1.2.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.5.2
Dividiere durch .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4.3
Kombiniere und .
Schritt 1.1.4.4
Mutltipliziere mit .
Schritt 1.1.4.5
Kombiniere und .
Schritt 1.1.4.6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.6.1
Faktorisiere aus heraus.
Schritt 1.1.4.6.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.6.2.1
Faktorisiere aus heraus.
Schritt 1.1.4.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.4.6.2.3
Forme den Ausdruck um.
Schritt 1.1.4.6.2.4
Dividiere durch .
Schritt 1.2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2.3
Mutltipliziere mit .
Schritt 1.2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3.3
Mutltipliziere mit .
Schritt 1.3
Die zweite Ableitung von nach ist .
Schritt 2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die zweite Ableitung gleich .
Schritt 2.2
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.3
Faktorisiere aus heraus.
Schritt 2.2.1.4
Faktorisiere aus heraus.
Schritt 2.2.1.5
Faktorisiere aus heraus.
Schritt 2.2.2
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Schreibe als um.
Schritt 2.2.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 2.2.2.3
Schreibe das Polynom neu.
Schritt 2.2.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Dividiere durch .
Schritt 2.4
Setze gleich .
Schritt 2.5
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3
Bestimme die Punkte, an denen die zweite Ableitung gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze in , um den Wert von zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1.1
Potenziere mit .
Schritt 3.1.2.1.2
Kombiniere und .
Schritt 3.1.2.1.3
Potenziere mit .
Schritt 3.1.2.1.4
Mutltipliziere mit .
Schritt 3.1.2.1.5
Potenziere mit .
Schritt 3.1.2.1.6
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1.6.1
Kombiniere und .
Schritt 3.1.2.1.6.2
Mutltipliziere mit .
Schritt 3.1.2.2
Ermittle den gemeinsamen Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 3.1.2.2.2
Mutltipliziere mit .
Schritt 3.1.2.2.3
Mutltipliziere mit .
Schritt 3.1.2.2.4
Mutltipliziere mit .
Schritt 3.1.2.2.5
Mutltipliziere mit .
Schritt 3.1.2.2.6
Mutltipliziere mit .
Schritt 3.1.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.1.2.4
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.4.1
Mutltipliziere mit .
Schritt 3.1.2.4.2
Mutltipliziere mit .
Schritt 3.1.2.5
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.5.1
Subtrahiere von .
Schritt 3.1.2.5.2
Addiere und .
Schritt 3.1.2.6
Die endgültige Lösung ist .
Schritt 3.2
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 4
Teile in Intervalle um die Punkte herum, die potentiell Wendepunkte sein könnten.
Schritt 5
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Potenziere mit .
Schritt 5.2.1.2
Mutltipliziere mit .
Schritt 5.2.1.3
Mutltipliziere mit .
Schritt 5.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Subtrahiere von .
Schritt 5.2.2.2
Addiere und .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 6
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Mutltipliziere mit .
Schritt 6.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Subtrahiere von .
Schritt 6.2.2.2
Addiere und .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 7
Ein Wendepunkt ist ein Punkt auf einer Kurve, an dem die Konkavität das Vorzeichen von Plus nach Minus oder von Minus nach Plus ändert. Es gibt keine Punkte auf dem Graph, die diese Bedingungen erfüllen.
Keine Wendepunkte