Analysis Beispiele

Ermittle die Stammfunktion f(x)=(x^6-x)/(x^3)
Schritt 1
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 2
Stelle das Integral auf, um zu lösen.
Schritt 3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1.1
Faktorisiere aus heraus.
Schritt 3.1.1.2
Faktorisiere aus heraus.
Schritt 3.1.1.3
Faktorisiere aus heraus.
Schritt 3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Faktorisiere aus heraus.
Schritt 3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.3
Forme den Ausdruck um.
Schritt 3.2
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 3.2.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.2.2
Mutltipliziere mit .
Schritt 4
Multipliziere .
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.1.2
Subtrahiere von .
Schritt 5.2
Schreibe als um.
Schritt 6
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Vereinfache.
Schritt 10.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Mutltipliziere mit .
Schritt 10.2.2
Mutltipliziere mit .
Schritt 11
Die Lösung ist die Stammfunktion der Funktion .