Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.2.3
Ersetze alle durch .
Schritt 3.2.3
Schreibe als um.
Schritt 3.2.4
Mutltipliziere mit .
Schritt 3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4
Berechne .
Schritt 3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.4.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.4.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.4.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.3.3
Ersetze alle durch .
Schritt 3.4.4
Schreibe als um.
Schritt 3.4.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.6
Bringe auf die linke Seite von .
Schritt 3.4.7
Mutltipliziere mit .
Schritt 3.5
Vereinfache.
Schritt 3.5.1
Wende das Distributivgesetz an.
Schritt 3.5.2
Mutltipliziere mit .
Schritt 3.5.3
Stelle die Terme um.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Schritt 5.1
Schreibe die Gleichung als um.
Schritt 5.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.3
Faktorisiere aus heraus.
Schritt 5.3.1
Faktorisiere aus heraus.
Schritt 5.3.2
Faktorisiere aus heraus.
Schritt 5.3.3
Faktorisiere aus heraus.
Schritt 5.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.4.1
Teile jeden Ausdruck in durch .
Schritt 5.4.2
Vereinfache die linke Seite.
Schritt 5.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.1.2
Forme den Ausdruck um.
Schritt 5.4.2.2
Kürze den gemeinsamen Faktor von .
Schritt 5.4.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.2.2
Dividiere durch .
Schritt 5.4.3
Vereinfache die rechte Seite.
Schritt 5.4.3.1
Vereinfache jeden Term.
Schritt 5.4.3.1.1
Kürze den gemeinsamen Teiler von und .
Schritt 5.4.3.1.1.1
Faktorisiere aus heraus.
Schritt 5.4.3.1.1.2
Kürze die gemeinsamen Faktoren.
Schritt 5.4.3.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.3.1.1.2.2
Forme den Ausdruck um.
Schritt 5.4.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.4.3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.4.3.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 5.4.3.3.1
Mutltipliziere mit .
Schritt 5.4.3.3.2
Stelle die Faktoren von um.
Schritt 5.4.3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.4.3.5
Vereinfache den Zähler.
Schritt 5.4.3.5.1
Potenziere mit .
Schritt 5.4.3.5.2
Potenziere mit .
Schritt 5.4.3.5.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.4.3.5.4
Addiere und .
Schritt 5.4.3.5.5
Schreibe als um.
Schritt 5.4.3.5.6
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 6
Ersetze durch .