Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Bringe auf die linke Seite von .
Schritt 2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3
Schritt 3.1
Es sei . Ermittle .
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.1.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.5
Addiere und .
Schritt 3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4
Kombiniere und .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Schritt 6.1
Kombiniere und .
Schritt 6.2
Kürze den gemeinsamen Teiler von und .
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.2
Kürze die gemeinsamen Faktoren.
Schritt 6.2.2.1
Faktorisiere aus heraus.
Schritt 6.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.3
Forme den Ausdruck um.
Schritt 6.2.2.4
Dividiere durch .
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Schritt 8.1
Schreibe als um.
Schritt 8.2
Vereinfache.
Schritt 8.2.1
Kombiniere und .
Schritt 8.2.2
Kürze den gemeinsamen Faktor von .
Schritt 8.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.2.2
Forme den Ausdruck um.
Schritt 8.2.3
Mutltipliziere mit .
Schritt 9
Ersetze alle durch .