Analysis Beispiele

Berechne das Integral Integral über 1/(5+2x^6)(12x^5) nach x
Schritt 1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Kombiniere und .
Schritt 1.2
Kombiniere und .
Schritt 2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3
Schreibe als um.
Schritt 4
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Differenziere .
Schritt 4.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Vereinfache.
Schritt 5.2
Mutltipliziere mit .
Schritt 5.3
Bringe auf die linke Seite von .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Kombiniere und .
Schritt 7.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Faktorisiere aus heraus.
Schritt 7.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Faktorisiere aus heraus.
Schritt 7.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.3
Forme den Ausdruck um.
Schritt 7.2.2.4
Dividiere durch .
Schritt 8
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.1
Differenziere .
Schritt 8.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 8.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.1.3.3
Mutltipliziere mit .
Schritt 8.1.4
Addiere und .
Schritt 8.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 9
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Mutltipliziere mit .
Schritt 9.2
Bringe auf die linke Seite von .
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Kombiniere und .
Schritt 11.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Kürze den gemeinsamen Faktor.
Schritt 11.2.2
Forme den Ausdruck um.
Schritt 11.3
Mutltipliziere mit .
Schritt 12
Das Integral von nach ist .
Schritt 13
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Ersetze alle durch .
Schritt 13.2
Ersetze alle durch .