Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Schritt 1.2.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.2.2
Bringe den Grenzwert in den Exponenten.
Schritt 1.2.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.2.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.2.5
Vereinfache Terme.
Schritt 1.2.5.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.5.2
Vereinfache die Lösung.
Schritt 1.2.5.2.1
Vereinfache jeden Term.
Schritt 1.2.5.2.1.1
Alles, was mit potenziert wird, ist .
Schritt 1.2.5.2.1.2
Mutltipliziere mit .
Schritt 1.2.5.2.2
Subtrahiere von .
Schritt 1.3
Berechne den Grenzwert des Nenners.
Schritt 1.3.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.3.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 1.3.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.3.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.3.5
Berechne die Grenzwerte durch Einsetzen von für alle .
Schritt 1.3.5.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.3.5.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.3.6
Vereinfache die Lösung.
Schritt 1.3.6.1
Vereinfache jeden Term.
Schritt 1.3.6.1.1
Mutltipliziere mit .
Schritt 1.3.6.1.2
Der genau Wert von ist .
Schritt 1.3.6.1.3
Mutltipliziere mit .
Schritt 1.3.6.2
Addiere und .
Schritt 1.3.6.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.3.7
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3
Berechne .
Schritt 3.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.3.1.3
Ersetze alle durch .
Schritt 3.3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.4
Mutltipliziere mit .
Schritt 3.3.5
Bringe auf die linke Seite von .
Schritt 3.3.6
Schreibe als um.
Schritt 3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.5
Addiere und .
Schritt 3.6
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.7
Berechne .
Schritt 3.7.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.7.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.7.1.2
Die Ableitung von nach ist .
Schritt 3.7.1.3
Ersetze alle durch .
Schritt 3.7.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.7.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.7.4
Mutltipliziere mit .
Schritt 3.7.5
Bringe auf die linke Seite von .
Schritt 3.8
Berechne .
Schritt 3.8.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.8.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.8.3
Mutltipliziere mit .
Schritt 3.9
Stelle die Terme um.
Schritt 4
Since the numerator is negative and the denominator approaches zero and is less than zero for near on both sides, the function increases without bound.