Analysis Beispiele

Berechne das Integral Integral über (2x^2e^(5x^3+1))/(3-e^(5x^3+1)) nach x
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3.3
Mutltipliziere mit .
Schritt 2.1.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.4.2
Addiere und .
Schritt 2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Mutltipliziere mit .
Schritt 3.2
Bringe auf die linke Seite von .
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Kombiniere und .
Schritt 6
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Differenziere .
Schritt 6.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 6.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 6.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.1.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 6.1.4
Subtrahiere von .
Schritt 6.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7
Ziehe das Minuszeichen vor den Bruch.
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Das Integral von nach ist .
Schritt 10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Vereinfache.
Schritt 10.2
Kombiniere und .
Schritt 11
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Ersetze alle durch .
Schritt 11.2
Ersetze alle durch .
Schritt 12
Stelle die Terme um.