Analysis Beispiele

미분 구하기 - d/dx (2x)/(e^(2x))
Schritt 1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 3
Differenziere unter Anwendung der Potenzregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.1.2
Mutltipliziere mit .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Mutltipliziere mit .
Schritt 4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 4.3
Ersetze alle durch .
Schritt 5
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.2
Mutltipliziere mit .
Schritt 5.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.4
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Mutltipliziere mit .
Schritt 5.4.2
Kombiniere und .
Schritt 6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Wende das Distributivgesetz an.
Schritt 6.2
Mutltipliziere mit .
Schritt 6.3
Stelle die Terme um.
Schritt 6.4
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Faktorisiere aus heraus.
Schritt 6.4.2
Faktorisiere aus heraus.
Schritt 6.4.3
Faktorisiere aus heraus.
Schritt 6.5
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1
Faktorisiere aus heraus.
Schritt 6.5.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.2.1
Multipliziere mit .
Schritt 6.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.5.2.3
Forme den Ausdruck um.
Schritt 6.5.2.4
Dividiere durch .
Schritt 6.6
Wende das Distributivgesetz an.
Schritt 6.7
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 6.8
Mutltipliziere mit .
Schritt 6.9
Mutltipliziere mit .
Schritt 6.10
Stelle die Faktoren in um.