Analysis Beispiele

Berechne das Integral Integral von e bis e^2 über natürlicherLogarithmus von x nach x
Schritt 1
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Kombiniere und .
Schritt 2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2
Forme den Ausdruck um.
Schritt 3
Wende die Konstantenregel an.
Schritt 4
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Berechne bei und .
Schritt 4.2
Berechne bei und .
Schritt 4.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Benutze die Rechenregeln für Logarithmen, um aus dem Exponenten zu ziehen.
Schritt 4.3.2
Der natürliche Logarithmus von ist .
Schritt 4.3.3
Mutltipliziere mit .
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Der natürliche Logarithmus von ist .
Schritt 5.1.2
Mutltipliziere mit .
Schritt 5.1.3
Wende das Distributivgesetz an.
Schritt 5.1.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.4.1
Mutltipliziere mit .
Schritt 5.1.4.2
Mutltipliziere mit .
Schritt 5.2
Subtrahiere von .
Schritt 5.3
Addiere und .
Schritt 5.4
Addiere und .
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: