Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Potenziere mit .
Schritt 1.2
Faktorisiere aus heraus.
Schritt 1.3
Faktorisiere aus heraus.
Schritt 1.4
Faktorisiere aus heraus.
Schritt 2
Teile den Zähler und Nenner durch die höchste Potenz von im Nenner, was ist.
Schritt 3
Kürze den gemeinsamen Faktor von .
Schritt 4
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Kürze den gemeinsamen Faktor.
Schritt 4.3
Forme den Ausdruck um.
Schritt 5
Schritt 5.1
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 5.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 5.3
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 6
Teile den Zähler und Nenner durch die höchste Potenz von im Nenner, was ist.
Schritt 7
Schritt 7.1
Kürze den gemeinsamen Faktor von .
Schritt 7.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.1.2
Dividiere durch .
Schritt 7.2
Kürze den gemeinsamen Faktor von .
Schritt 7.2.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.2
Forme den Ausdruck um.
Schritt 7.3
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 7.4
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 8
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 9
Schritt 9.1
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 9.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 9.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 9.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 10
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 11
Schritt 11.1
Dividiere durch .
Schritt 11.2
Addiere und .
Schritt 11.3
Addiere und .
Schritt 11.4
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 12
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: