Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 2
Stelle das Integral auf, um zu lösen.
Schritt 3
Schritt 3.1
Benutze , um als neu zu schreiben.
Schritt 3.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.2.1
Bewege .
Schritt 3.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.2.4
Kombiniere und .
Schritt 3.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.6
Vereinfache den Zähler.
Schritt 3.2.6.1
Mutltipliziere mit .
Schritt 3.2.6.2
Addiere und .
Schritt 4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5
Benutze , um als neu zu schreiben.
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9
Schritt 9.1
Vereinfache.
Schritt 9.2
Vereinfache.
Schritt 9.2.1
Kombiniere und .
Schritt 9.2.2
Mutltipliziere mit .
Schritt 10
Die Lösung ist die Stammfunktion der Funktion .