Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Entferne die Klammern.
Schritt 2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 3
Schritt 3.1
Es sei . Ermittle .
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.4
Mutltipliziere mit .
Schritt 3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4
Kombiniere und .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Das Integral von nach ist .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Schritt 8.1
Es sei . Ermittle .
Schritt 8.1.1
Differenziere .
Schritt 8.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.1.4
Mutltipliziere mit .
Schritt 8.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 9
Schritt 9.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 9.2
Kombiniere und .
Schritt 10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 11
Mutltipliziere mit .
Schritt 12
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 13
Schritt 13.1
Kombiniere und .
Schritt 13.2
Kürze den gemeinsamen Teiler von und .
Schritt 13.2.1
Faktorisiere aus heraus.
Schritt 13.2.2
Kürze die gemeinsamen Faktoren.
Schritt 13.2.2.1
Faktorisiere aus heraus.
Schritt 13.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 13.2.2.3
Forme den Ausdruck um.
Schritt 14
Das Integral von nach ist .
Schritt 15
Vereinfache.
Schritt 16
Schritt 16.1
Ersetze alle durch .
Schritt 16.2
Ersetze alle durch .