Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Schritt 6.1
Es sei . Ermittle .
Schritt 6.1.1
Differenziere .
Schritt 6.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.1.4
Mutltipliziere mit .
Schritt 6.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7
Kombiniere und .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Schritt 9.1
Mutltipliziere mit .
Schritt 9.2
Mutltipliziere mit .
Schritt 10
Das Integral von nach ist .
Schritt 11
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 12
Schritt 12.1
Es sei . Ermittle .
Schritt 12.1.1
Differenziere .
Schritt 12.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 12.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 12.1.4
Mutltipliziere mit .
Schritt 12.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 13
Kombiniere und .
Schritt 14
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 15
Schritt 15.1
Kombiniere und .
Schritt 15.2
Kürze den gemeinsamen Teiler von und .
Schritt 15.2.1
Faktorisiere aus heraus.
Schritt 15.2.2
Kürze die gemeinsamen Faktoren.
Schritt 15.2.2.1
Faktorisiere aus heraus.
Schritt 15.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 15.2.2.3
Forme den Ausdruck um.
Schritt 15.2.2.4
Dividiere durch .
Schritt 16
Das Integral von nach ist .
Schritt 17
Schritt 17.1
Vereinfache.
Schritt 17.2
Vereinfache.
Schritt 17.2.1
Mutltipliziere mit .
Schritt 17.2.2
Mutltipliziere mit .
Schritt 18
Schritt 18.1
Ersetze alle durch .
Schritt 18.2
Ersetze alle durch .
Schritt 19
Die Lösung ist die Stammfunktion der Funktion .