Analysis Beispiele

Ermittle die Stammfunktion 8x^4+(x^-2)/2
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 5
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 9.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Kombiniere und .
Schritt 9.2.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.2.2.2
Mutltipliziere mit .
Schritt 10
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 11
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Vereinfache.
Schritt 11.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Kombiniere und .
Schritt 11.2.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 11.3
Stelle die Terme um.
Schritt 12
Die Lösung ist die Stammfunktion der Funktion .