Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.3
Differenziere.
Schritt 1.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.4
Vereinfache den Ausdruck.
Schritt 1.3.4.1
Addiere und .
Schritt 1.3.4.2
Mutltipliziere mit .
Schritt 1.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.6
Bringe auf die linke Seite von .
Schritt 1.4
Vereinfache.
Schritt 1.4.1
Wende das Distributivgesetz an.
Schritt 1.4.2
Wende das Distributivgesetz an.
Schritt 1.4.3
Wende das Distributivgesetz an.
Schritt 1.4.4
Vereine die Terme
Schritt 1.4.4.1
Potenziere mit .
Schritt 1.4.4.2
Potenziere mit .
Schritt 1.4.4.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.4.4.4
Addiere und .
Schritt 1.4.4.5
Mutltipliziere mit .
Schritt 1.4.4.6
Mutltipliziere mit .
Schritt 1.4.4.7
Mutltipliziere mit .
Schritt 1.4.4.8
Addiere und .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Differenziere unter Anwendung der Konstantenregel.
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.2
Addiere und .