Analysis Beispiele

Berechne das Integral Integral über x^7cos(x^4) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Benutze , um als neu zu schreiben.
Schritt 2.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.3
Kombiniere und .
Schritt 2.1.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.4.1
Faktorisiere aus heraus.
Schritt 2.1.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.4.2.1
Faktorisiere aus heraus.
Schritt 2.1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.4.2.3
Forme den Ausdruck um.
Schritt 2.1.4.2.4
Dividiere durch .
Schritt 2.2
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Benutze , um als neu zu schreiben.
Schritt 2.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.3
Kombiniere und .
Schritt 2.2.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.1
Faktorisiere aus heraus.
Schritt 2.2.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.2.1
Faktorisiere aus heraus.
Schritt 2.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.4.2.3
Forme den Ausdruck um.
Schritt 2.2.4.2.4
Dividiere durch .
Schritt 2.3
Kombiniere und .
Schritt 2.4
Kombiniere und .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Differenziere .
Schritt 4.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Kombiniere und .
Schritt 5.2
Kombiniere und .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Mutltipliziere mit .
Schritt 7.2
Mutltipliziere mit .
Schritt 8
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 9
Das Integral von nach ist .
Schritt 10
Schreibe als um.
Schritt 11
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Ersetze alle durch .
Schritt 11.2
Ersetze alle durch .
Schritt 12
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 12.1.1.2
Mutltipliziere mit .
Schritt 12.1.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 12.1.2.2
Mutltipliziere mit .
Schritt 12.1.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 12.1.3.2
Mutltipliziere mit .
Schritt 12.2
Wende das Distributivgesetz an.
Schritt 12.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.3.1
Kombiniere und .
Schritt 12.3.2
Kombiniere und .
Schritt 12.4
Kombiniere und .
Schritt 13
Stelle die Terme um.