Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Berechne den Grenzwert des Zählers.
Schritt 1.1.2.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.1.2.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Schritt 1.1.2.4
Berechne die Grenzwerte durch Einsetzen von für alle .
Schritt 1.1.2.4.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.4.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.5
Vereinfache die Lösung.
Schritt 1.1.2.5.1
Vereinfache jeden Term.
Schritt 1.1.2.5.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sekans im zweiten Quadranten negativ ist.
Schritt 1.1.2.5.1.2
Der genau Wert von ist .
Schritt 1.1.2.5.1.3
Mutltipliziere mit .
Schritt 1.1.2.5.1.4
Bringe auf die linke Seite von .
Schritt 1.1.2.5.1.5
Schreibe als um.
Schritt 1.1.2.5.2
Subtrahiere von .
Schritt 1.1.3
Berechne den Grenzwert des Nenners.
Schritt 1.1.3.1
Berechne den Grenzwert.
Schritt 1.1.3.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.3.1.2
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 1.1.3.1.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.3.3
Subtrahiere von .
Schritt 1.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4
Berechne .
Schritt 1.3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.4.2
Die Ableitung von nach ist .
Schritt 1.3.5
Stelle die Terme um.
Schritt 1.3.6
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.8
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.9
Addiere und .
Schritt 2
Schritt 2.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.2
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.5
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.6
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Schritt 2.7
Bringe den Grenzwert in die trigonometrische Funktion, da der Tangens stetig ist.
Schritt 2.8
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3
Schritt 3.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4
Schritt 4.1
Vereinfache den Zähler.
Schritt 4.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sekans im zweiten Quadranten negativ ist.
Schritt 4.1.2
Der genau Wert von ist .
Schritt 4.1.3
Mutltipliziere mit .
Schritt 4.1.4
Bringe auf die linke Seite von .
Schritt 4.1.5
Schreibe als um.
Schritt 4.1.6
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Tangens im zweiten Quadranten negativ ist.
Schritt 4.1.7
Der genau Wert von ist .
Schritt 4.1.8
Mutltipliziere mit .
Schritt 4.1.9
Multipliziere .
Schritt 4.1.9.1
Mutltipliziere mit .
Schritt 4.1.9.2
Mutltipliziere mit .
Schritt 4.1.10
Addiere und .
Schritt 4.2
Mutltipliziere mit .
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: