Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Sei , mit . Dann ist . Beachte, dass wegen , positiv ist.
Schritt 5
Schritt 5.1
Vereinfache .
Schritt 5.1.1
Wende den trigonometrischen Pythagoras an.
Schritt 5.1.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.2
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2
Forme den Ausdruck um.
Schritt 6
Faktorisiere aus.
Schritt 7
Schreibe in um unter Verwendung des trigonometrischen Pythagoras.
Schritt 8
Schritt 8.1
Es sei . Ermittle .
Schritt 8.1.1
Differenziere .
Schritt 8.1.2
Die Ableitung von nach ist .
Schritt 8.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 9
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 10
Wende die Konstantenregel an.
Schritt 11
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 12
Vereinfache.
Schritt 13
Schritt 13.1
Ersetze alle durch .
Schritt 13.2
Ersetze alle durch .
Schritt 14
Die Lösung ist die Stammfunktion der Funktion .