Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 5
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 6
Bringe den Grenzwert in den Exponenten.
Schritt 7
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 8
Schritt 8.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 8.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 8.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 9
Schritt 9.1
Kombiniere und .
Schritt 9.2
Vereinfache den Zähler.
Schritt 9.2.1
Kombiniere und .
Schritt 9.2.2
Der genau Wert von ist .
Schritt 9.3
Dividiere durch .
Schritt 9.4
Dividiere durch .