Analysis Beispiele

미분 구하기 - d/dx (1/x)^x
Schritt 1
Wende die Logarithmengesetze an, um die Ableitung zu vereinfachen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Schritt 1.2
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3
Ersetze alle durch .
Schritt 3
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2
Die Ableitung von nach ist .
Schritt 4.3
Ersetze alle durch .
Schritt 5
Multipliziere mit dem Kehrwert des Bruchs, um durch zu dividieren.
Schritt 6
Mutltipliziere mit .
Schritt 7
Potenziere mit .
Schritt 8
Potenziere mit .
Schritt 9
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 10
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Addiere und .
Schritt 10.2
Schreibe als um.
Schritt 11
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 12
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Bewege .
Schritt 12.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 12.3
Addiere und .
Schritt 13
Vereinfache .
Schritt 14
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 15
Mutltipliziere mit .
Schritt 16
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 16.1
Wende das Distributivgesetz an.
Schritt 16.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 16.2.1
Bringe auf die linke Seite von .
Schritt 16.2.2
Schreibe als um.
Schritt 16.3
Stelle die Terme um.