Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Teile den Zähler und Nenner durch die höchste Potenz von im Nenner, was ist.
Schritt 2
Schritt 2.1
Vereinfache jeden Term.
Schritt 2.1.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.1.1.1
Faktorisiere aus heraus.
Schritt 2.1.1.2
Kürze die gemeinsamen Faktoren.
Schritt 2.1.1.2.1
Faktorisiere aus heraus.
Schritt 2.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.1.1.2.3
Forme den Ausdruck um.
Schritt 2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.2
Dividiere durch .
Schritt 2.2
Vereinfache jeden Term.
Schritt 2.2.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Kürze die gemeinsamen Faktoren.
Schritt 2.2.1.2.1
Faktorisiere aus heraus.
Schritt 2.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2.3
Forme den Ausdruck um.
Schritt 2.2.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.2
Dividiere durch .
Schritt 2.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.4
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.5
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 4
Schritt 4.1
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 4.2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 5
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 6
Schritt 6.1
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 6.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 7
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 8
Schritt 8.1
Vereinfache den Zähler.
Schritt 8.1.1
Mutltipliziere mit .
Schritt 8.1.2
Mutltipliziere mit .
Schritt 8.1.3
Subtrahiere von .
Schritt 8.2
Vereinfache den Nenner.
Schritt 8.2.1
Mutltipliziere mit .
Schritt 8.2.2
Mutltipliziere mit .
Schritt 8.2.3
Mutltipliziere mit .
Schritt 8.2.4
Addiere und .
Schritt 8.2.5
Subtrahiere von .
Schritt 8.3
Dividiere durch .