Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Berechne den Grenzwert des Zählers.
Schritt 1.1.2.1
Berechne den Grenzwert.
Schritt 1.1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.1.2
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 1.1.2.1.3
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 1.1.2.1.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.3
Vereinfache die Lösung.
Schritt 1.1.2.3.1
Vereinfache jeden Term.
Schritt 1.1.2.3.1.1
Potenziere mit .
Schritt 1.1.2.3.1.2
Schreibe als um.
Schritt 1.1.2.3.1.3
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 1.1.2.3.1.4
Mutltipliziere mit .
Schritt 1.1.2.3.2
Subtrahiere von .
Schritt 1.1.3
Berechne den Grenzwert des Nenners.
Schritt 1.1.3.1
Berechne den Grenzwert.
Schritt 1.1.3.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.3.1.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.3.3
Vereinfache die Lösung.
Schritt 1.1.3.3.1
Mutltipliziere mit .
Schritt 1.1.3.3.2
Subtrahiere von .
Schritt 1.1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Berechne .
Schritt 1.3.3.1
Benutze , um als neu zu schreiben.
Schritt 1.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.3.3.4
Kombiniere und .
Schritt 1.3.3.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3.3.6
Vereinfache den Zähler.
Schritt 1.3.3.6.1
Mutltipliziere mit .
Schritt 1.3.3.6.2
Subtrahiere von .
Schritt 1.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.5
Vereinfache.
Schritt 1.3.5.1
Addiere und .
Schritt 1.3.5.2
Kombiniere und .
Schritt 1.3.6
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.8
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.9
Addiere und .
Schritt 1.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.5
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.2
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4
Schritt 4.1
Schreibe als um.
Schritt 4.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3
Kürze den gemeinsamen Faktor von .
Schritt 4.3.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.2
Forme den Ausdruck um.
Schritt 4.4
Potenziere mit .
Schritt 4.5
Kürze den gemeinsamen Faktor von .
Schritt 4.5.1
Faktorisiere aus heraus.
Schritt 4.5.2
Kürze den gemeinsamen Faktor.
Schritt 4.5.3
Forme den Ausdruck um.
Schritt 4.6
Mutltipliziere mit .