Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Schritt 4.1
Kehre das Vorzeichen des Exponenten von um und ziehe es aus dem Nenner heraus.
Schritt 4.2
Multipliziere die Exponenten in .
Schritt 4.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.2.2
Bringe auf die linke Seite von .
Schritt 4.2.3
Schreibe als um.
Schritt 5
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Schritt 7.1
Mutltipliziere mit .
Schritt 7.2
Mutltipliziere mit .
Schritt 8
Schritt 8.1
Es sei . Ermittle .
Schritt 8.1.1
Differenziere .
Schritt 8.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.1.4
Mutltipliziere mit .
Schritt 8.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Das Integral von nach ist .
Schritt 11
Schreibe als um.
Schritt 12
Ersetze alle durch .
Schritt 13
Die Lösung ist die Stammfunktion der Funktion .