Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Schritt 6.1
Es sei . Ermittle .
Schritt 6.1.1
Differenziere .
Schritt 6.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.1.4
Mutltipliziere mit .
Schritt 6.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7
Kombiniere und .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Schritt 9.1
Kombiniere und .
Schritt 9.2
Kürze den gemeinsamen Teiler von und .
Schritt 9.2.1
Faktorisiere aus heraus.
Schritt 9.2.2
Kürze die gemeinsamen Faktoren.
Schritt 9.2.2.1
Faktorisiere aus heraus.
Schritt 9.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 9.2.2.3
Forme den Ausdruck um.
Schritt 9.2.2.4
Dividiere durch .
Schritt 10
Das Integral von nach ist .
Schritt 11
Schritt 11.1
Es sei . Ermittle .
Schritt 11.1.1
Differenziere .
Schritt 11.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 11.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 11.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 11.1.5
Addiere und .
Schritt 11.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 12
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 13
Vereinfache.
Schritt 14
Schritt 14.1
Ersetze alle durch .
Schritt 14.2
Ersetze alle durch .
Schritt 15
Die Lösung ist die Stammfunktion der Funktion .