Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2
Die Ableitung von nach ist .
Schritt 1.2.3
Ersetze alle durch .
Schritt 1.3
Differenziere.
Schritt 1.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4
Mutltipliziere mit .
Schritt 1.3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.6
Vereinfache den Ausdruck.
Schritt 1.3.6.1
Addiere und .
Schritt 1.3.6.2
Stelle die Faktoren von um.
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2
Die Ableitung von nach ist .
Schritt 2.2.3
Ersetze alle durch .
Schritt 2.3
Differenziere.
Schritt 2.3.1
Mutltipliziere mit .
Schritt 2.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5
Mutltipliziere mit .
Schritt 2.3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.7
Addiere und .
Schritt 2.4
Potenziere mit .
Schritt 2.5
Potenziere mit .
Schritt 2.6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.7
Addiere und .
Schritt 3
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Die Ableitung von nach ist .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Differenziere.
Schritt 3.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.4
Mutltipliziere mit .
Schritt 3.3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.6
Addiere und .
Schritt 3.4
Potenziere mit .
Schritt 3.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.6
Addiere und .