Analysis Beispiele

Berechne unter Anwendung der Regel von de l’Hospital Grenzwert von (x+pisec(x))/(x^2-pi^2), wenn x gegen pi geht
Schritt 1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.2.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.2.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Schritt 1.2.4
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.4.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.5
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sekans im zweiten Quadranten negativ ist.
Schritt 1.2.5.1.2
Der genau Wert von ist .
Schritt 1.2.5.1.3
Mutltipliziere mit .
Schritt 1.2.5.1.4
Bringe auf die linke Seite von .
Schritt 1.2.5.1.5
Schreibe als um.
Schritt 1.2.5.2
Subtrahiere von .
Schritt 1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.3.1.2
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 1.3.1.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.3.3
Subtrahiere von .
Schritt 1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.2
Die Ableitung von nach ist .
Schritt 3.4.3
Entferne die Klammern.
Schritt 3.5
Stelle die Terme um.
Schritt 3.6
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.8
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.9
Addiere und .
Schritt 4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 5
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 6
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 7
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 8
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 9
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Schritt 10
Bringe den Grenzwert in die trigonometrische Funktion, da der Tangens stetig ist.
Schritt 11
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 12
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 12.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 12.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 13
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sekans im zweiten Quadranten negativ ist.
Schritt 13.1.2
Der genau Wert von ist .
Schritt 13.1.3
Mutltipliziere mit .
Schritt 13.1.4
Bringe auf die linke Seite von .
Schritt 13.1.5
Schreibe als um.
Schritt 13.1.6
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Tangens im zweiten Quadranten negativ ist.
Schritt 13.1.7
Der genau Wert von ist .
Schritt 13.1.8
Mutltipliziere mit .
Schritt 13.1.9
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1.9.1
Mutltipliziere mit .
Schritt 13.1.9.2
Mutltipliziere mit .
Schritt 13.1.10
Addiere und .
Schritt 13.2
Mutltipliziere mit .