Analysis Beispiele

Berechne das Integral Integral über (5x)/(4x+4x^2) nach x
Schritt 1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2
Schreibe den Bruch mithilfe der Teilbruchzerlegung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Zerlege den Bruch und multipliziere mit dem gemeinsamen Nenner durch.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Faktorisiere den Bruch.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1.1
Faktorisiere aus heraus.
Schritt 2.1.1.1.2
Faktorisiere aus heraus.
Schritt 2.1.1.1.3
Faktorisiere aus heraus.
Schritt 2.1.1.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.1.2.2
Forme den Ausdruck um.
Schritt 2.1.2
Bilde für jeden Faktor im Nenner einen neuen Bruch mit dem Faktor als Nenner und einem unbekannten Wert als Zähler. Da der Faktor im Nenner linear ist, setze eine einzelne Variable für den Zähler ein .
Schritt 2.1.3
Multipliziere jeden Bruch in der Gleichung mit dem Nenner des ursprünglichen Ausdrucks. In diesem Fall ist der Nenner gleich .
Schritt 2.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.4.2
Forme den Ausdruck um.
Schritt 2.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.5.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.5.2
Forme den Ausdruck um.
Schritt 2.1.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.6.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.6.2
Dividiere durch .
Schritt 2.1.7
Bringe auf die linke Seite von .
Schritt 2.2
Löse das Gleichungssystem.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Schreibe die Gleichung als um.
Schritt 2.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.2.1.2
Dividiere durch .
Schritt 2.3
Replace each of the partial fraction coefficients in with the values found for and .
Schritt 2.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.4.2
Mutltipliziere mit .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Kombiniere und .
Schritt 5
Sei . Dann ist . Forme um unter Vewendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Differenziere .
Schritt 5.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 5.1.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.5
Addiere und .
Schritt 5.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 6
Das Integral von nach ist .
Schritt 7
Vereinfache.
Schritt 8
Ersetze alle durch .