Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Schritt 4.1
Es sei . Ermittle .
Schritt 4.1.1
Differenziere .
Schritt 4.1.2
Differenziere.
Schritt 4.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.3
Berechne .
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.3
Mutltipliziere mit .
Schritt 4.1.4
Subtrahiere von .
Schritt 4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 5
Schritt 5.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.2
Kombiniere und .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Benutze , um als neu zu schreiben.
Schritt 9
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10
Schritt 10.1
Schreibe als um.
Schritt 10.2
Vereinfache.
Schritt 10.2.1
Mutltipliziere mit .
Schritt 10.2.2
Mutltipliziere mit .
Schritt 10.2.3
Kürze den gemeinsamen Teiler von und .
Schritt 10.2.3.1
Faktorisiere aus heraus.
Schritt 10.2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 10.2.3.2.1
Faktorisiere aus heraus.
Schritt 10.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 10.2.3.2.3
Forme den Ausdruck um.
Schritt 11
Ersetze alle durch .
Schritt 12
Die Lösung ist die Stammfunktion der Funktion .