Analysis Beispiele

Second 도함수 구하기 x+ Quadratwurzel von x+1
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Benutze , um als neu zu schreiben.
Schritt 1.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2.3
Ersetze alle durch .
Schritt 1.2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.7
Kombiniere und .
Schritt 1.2.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.9
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.9.1
Mutltipliziere mit .
Schritt 1.2.9.2
Subtrahiere von .
Schritt 1.2.10
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.11
Addiere und .
Schritt 1.2.12
Kombiniere und .
Schritt 1.2.13
Mutltipliziere mit .
Schritt 1.2.14
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Schreibe als um.
Schritt 2.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3.3
Ersetze alle durch .
Schritt 2.2.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.4.3
Ersetze alle durch .
Schritt 2.2.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.8
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.8.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.8.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.8.2.1
Faktorisiere aus heraus.
Schritt 2.2.8.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.8.2.3
Forme den Ausdruck um.
Schritt 2.2.9
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.10
Kombiniere und .
Schritt 2.2.11
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.12
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.12.1
Mutltipliziere mit .
Schritt 2.2.12.2
Subtrahiere von .
Schritt 2.2.13
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.14
Addiere und .
Schritt 2.2.15
Kombiniere und .
Schritt 2.2.16
Mutltipliziere mit .
Schritt 2.2.17
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.2.18
Kombiniere und .
Schritt 2.2.19
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.2.20
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.20.1
Bewege .
Schritt 2.2.20.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.20.2.1
Potenziere mit .
Schritt 2.2.20.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.20.3
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 2.2.20.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.20.5
Addiere und .
Schritt 2.2.21
Mutltipliziere mit .
Schritt 2.2.22
Mutltipliziere mit .
Schritt 2.3
Subtrahiere von .