Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)=2 Quadratwurzel von y+1cos(x)
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.2.2
Mutltipliziere mit .
Schritt 1.2.3
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Mutltipliziere mit .
Schritt 1.2.3.2
Potenziere mit .
Schritt 1.2.3.3
Potenziere mit .
Schritt 1.2.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.2.3.5
Addiere und .
Schritt 1.2.3.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.6.1
Benutze , um als neu zu schreiben.
Schritt 1.2.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.3.6.3
Kombiniere und .
Schritt 1.2.3.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.6.4.2
Forme den Ausdruck um.
Schritt 1.2.3.6.5
Vereinfache.
Schritt 1.2.4
Kombiniere und .
Schritt 1.2.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Kombiniere und .
Schritt 1.2.5.2
Potenziere mit .
Schritt 1.2.5.3
Potenziere mit .
Schritt 1.2.5.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.2.5.5
Addiere und .
Schritt 1.2.5.6
Kombiniere und .
Schritt 1.2.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Benutze , um als neu zu schreiben.
Schritt 1.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.6.3
Kombiniere und .
Schritt 1.2.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.6.4.2
Forme den Ausdruck um.
Schritt 1.2.6.5
Vereinfache.
Schritt 1.2.7
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.7.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.7.2
Dividiere durch .
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Sei . Dann ist . Forme um unter Vewendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Differenziere .
Schritt 2.2.1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.1.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.1.1.5
Addiere und .
Schritt 2.2.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.2.2
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Benutze , um als neu zu schreiben.
Schritt 2.2.2.2
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 2.2.2.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.2.3.2
Kombiniere und .
Schritt 2.2.2.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.4
Ersetze alle durch .
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Das Integral von nach ist .
Schritt 2.3.3
Vereinfache.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Teile jeden Ausdruck in durch .
Schritt 3.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.2
Dividiere durch .
Schritt 3.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.3.1.2
Dividiere durch .
Schritt 3.2
Potenziere jede Seite der Gleichung mit , um den gebrochenen Exponenten auf der linken Seite zu eliminieren.
Schritt 3.3
Vereinfache den Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.1.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.1.1.2.2
Forme den Ausdruck um.
Schritt 3.3.1.1.2
Vereinfache.
Schritt 3.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Schreibe als um.
Schritt 3.3.2.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.2.1
Wende das Distributivgesetz an.
Schritt 3.3.2.1.2.2
Wende das Distributivgesetz an.
Schritt 3.3.2.1.2.3
Wende das Distributivgesetz an.
Schritt 3.3.2.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.3.1.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.3.1.1.1
Potenziere mit .
Schritt 3.3.2.1.3.1.1.2
Potenziere mit .
Schritt 3.3.2.1.3.1.1.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3.2.1.3.1.1.4
Addiere und .
Schritt 3.3.2.1.3.1.2
Kombiniere und .
Schritt 3.3.2.1.3.1.3
Kombiniere und .
Schritt 3.3.2.1.3.1.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.3.1.4.1
Mutltipliziere mit .
Schritt 3.3.2.1.3.1.4.2
Potenziere mit .
Schritt 3.3.2.1.3.1.4.3
Potenziere mit .
Schritt 3.3.2.1.3.1.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3.2.1.3.1.4.5
Addiere und .
Schritt 3.3.2.1.3.1.4.6
Mutltipliziere mit .
Schritt 3.3.2.1.3.2
Addiere und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.3.2.1
Stelle und um.
Schritt 3.3.2.1.3.2.2
Addiere und .
Schritt 3.3.2.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.4.2
Forme den Ausdruck um.
Schritt 3.4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4
Vereinfache die Konstante der Integration.