Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Da für Wurzeln gegen geht, erreicht der Wert .
Schritt 1.1.3
Der Grenzwert im Unendlichen eines Polynoms, dessen Leitkoeffizient positiv ist, ist unendlich.
Schritt 1.1.4
Unendlich durch Unendlich geteilt ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4
Kürze den gemeinsamen Faktor von .
Schritt 1.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.2
Forme den Ausdruck um.
Schritt 2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.