Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5
Benutze , um als neu zu schreiben.
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Schritt 9.1
Mutltipliziere mit .
Schritt 9.2
Benutze , um als neu zu schreiben.
Schritt 9.3
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 9.4
Multipliziere die Exponenten in .
Schritt 9.4.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.4.2
Kombiniere und .
Schritt 9.4.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 10
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 11
Schritt 11.1
Vereinfache.
Schritt 11.2
Mutltipliziere mit .
Schritt 12
Die Lösung ist die Stammfunktion der Funktion .