Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 2
Stelle das Integral auf, um zu lösen.
Schritt 3
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Kombiniere und .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10
Schritt 10.1
Mutltipliziere mit .
Schritt 10.2
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 10.3
Multipliziere die Exponenten in .
Schritt 10.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 10.3.2
Mutltipliziere mit .
Schritt 11
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 12
Schritt 12.1
Kombiniere und .
Schritt 12.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 13
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 14
Benutze , um als neu zu schreiben.
Schritt 15
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 16
Schritt 16.1
Kombiniere und .
Schritt 16.2
Vereinfache.
Schritt 17
Stelle die Terme um.
Schritt 18
Die Lösung ist die Stammfunktion der Funktion .