Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Multipliziere beide Seiten mit .
Schritt 3
Schritt 3.1
Kürze den gemeinsamen Faktor von .
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.3
Forme den Ausdruck um.
Schritt 3.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.3
Kombiniere und .
Schritt 3.4
Kürze den gemeinsamen Faktor von .
Schritt 3.4.1
Faktorisiere aus heraus.
Schritt 3.4.2
Kürze den gemeinsamen Faktor.
Schritt 3.4.3
Forme den Ausdruck um.
Schritt 3.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Schritt 4.1
Integriere auf beiden Seiten.
Schritt 4.2
Das Integral von nach ist .
Schritt 4.3
Integriere die rechte Seite.
Schritt 4.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4.3.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4.3.3
Vereinfache den Ausdruck.
Schritt 4.3.3.1
Mutltipliziere mit .
Schritt 4.3.3.2
Kehre das Vorzeichen des Exponenten von um und ziehe es aus dem Nenner heraus.
Schritt 4.3.3.3
Vereinfache.
Schritt 4.3.3.3.1
Multipliziere die Exponenten in .
Schritt 4.3.3.3.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3.3.3.1.2
Mutltipliziere mit .
Schritt 4.3.3.3.2
Mutltipliziere mit .
Schritt 4.3.4
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 4.3.4.1
Es sei . Ermittle .
Schritt 4.3.4.1.1
Differenziere .
Schritt 4.3.4.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.3.4.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3.4.1.4
Mutltipliziere mit .
Schritt 4.3.4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4.3.5
Kombiniere und .
Schritt 4.3.6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4.3.7
Vereinfache.
Schritt 4.3.7.1
Kombiniere und .
Schritt 4.3.7.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.3.8
Das Integral von nach ist .
Schritt 4.3.9
Vereinfache.
Schritt 4.3.10
Ersetze alle durch .
Schritt 4.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 5
Schritt 5.1
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 5.2
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 5.3
Löse nach auf.
Schritt 5.3.1
Schreibe die Gleichung als um.
Schritt 5.3.2
Vereinfache jeden Term.
Schritt 5.3.2.1
Kombiniere und .
Schritt 5.3.2.2
Bringe auf die linke Seite von .
Schritt 5.3.3
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 6
Schritt 6.1
Schreibe als um.
Schritt 6.2
Stelle und um.
Schritt 6.3
Kombiniere Konstanten mit Plus oder Minus.