Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere nach .
Schritt 1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.3.2.3
Ersetze alle durch .
Schritt 1.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.5
Mutltipliziere mit .
Schritt 1.3.6
Bringe auf die linke Seite von .
Schritt 1.3.7
Mutltipliziere mit .
Schritt 1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.5
Vereinfache.
Schritt 1.5.1
Addiere und .
Schritt 1.5.2
Stelle die Faktoren von um.
Schritt 1.5.3
Stelle die Faktoren in um.
Schritt 2
Schritt 2.1
Differenziere nach .
Schritt 2.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.5
Vereinfache.
Schritt 2.5.1
Addiere und .
Schritt 2.5.2
Stelle die Faktoren in um.
Schritt 3
Schritt 3.1
Setze für und für ein.
Schritt 3.2
Da gezeigt wurde, dass die beiden Seiten äquivalent sind, ist die Gleichung eine Identitätsgleichung.
ist eine Identitätsgleichung.
ist eine Identitätsgleichung.
Schritt 4
Setze gleich dem Integral von .
Schritt 5
Schritt 5.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5.4
Das Integral von nach ist .
Schritt 5.5
Kombiniere und .
Schritt 5.6
Vereinfache.
Schritt 6
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 7
Setze .
Schritt 8
Schritt 8.1
Differenziere nach .
Schritt 8.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8.3
Berechne .
Schritt 8.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 8.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 8.3.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 8.3.2.3
Ersetze alle durch .
Schritt 8.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.3.5
Mutltipliziere mit .
Schritt 8.3.6
Bringe auf die linke Seite von .
Schritt 8.3.7
Bringe auf die linke Seite von .
Schritt 8.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 8.5
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 8.6
Vereinfache.
Schritt 8.6.1
Addiere und .
Schritt 8.6.2
Stelle die Terme um.
Schritt 8.6.3
Stelle die Faktoren in um.
Schritt 9
Schritt 9.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 9.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 9.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 9.1.2.1
Subtrahiere von .
Schritt 9.1.2.2
Addiere und .
Schritt 10
Schritt 10.1
Integriere beide Seiten von .
Schritt 10.2
Berechne .
Schritt 10.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10.5
Schreibe als um.
Schritt 11
Setze in ein.
Schritt 12
Schritt 12.1
Kombiniere und .
Schritt 12.2
Stelle die Faktoren in um.