Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Multipliziere beide Seiten mit .
Schritt 3
Schritt 3.1
Kürze den gemeinsamen Teiler von und .
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 3.1.2.1
Multipliziere mit .
Schritt 3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.3
Forme den Ausdruck um.
Schritt 3.1.2.4
Dividiere durch .
Schritt 3.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.2.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 3.2.2.1
Subtrahiere von .
Schritt 3.2.2.2
Addiere und .
Schritt 3.2.3
Addiere und .
Schritt 3.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.4
Kürze den gemeinsamen Teiler von und .
Schritt 3.4.1
Faktorisiere aus heraus.
Schritt 3.4.2
Kürze die gemeinsamen Faktoren.
Schritt 3.4.2.1
Multipliziere mit .
Schritt 3.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.3
Forme den Ausdruck um.
Schritt 3.4.2.4
Dividiere durch .
Schritt 3.5
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.5.1
Bewege .
Schritt 3.5.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.5.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 3.5.3.1
Addiere und .
Schritt 3.5.3.2
Addiere und .
Schritt 3.5.4
Addiere und .
Schritt 4
Schritt 4.1
Integriere auf beiden Seiten.
Schritt 4.2
Integriere die linke Seite.
Schritt 4.2.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 4.2.1.1
Es sei . Ermittle .
Schritt 4.2.1.1.1
Differenziere .
Schritt 4.2.1.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2.1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2.1.1.4
Mutltipliziere mit .
Schritt 4.2.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4.2.2
Kombiniere und .
Schritt 4.2.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4.2.4
Das Integral von nach ist .
Schritt 4.2.5
Vereinfache.
Schritt 4.2.6
Ersetze alle durch .
Schritt 4.3
Integriere die rechte Seite.
Schritt 4.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4.3.2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 4.3.2.1
Es sei . Ermittle .
Schritt 4.3.2.1.1
Differenziere .
Schritt 4.3.2.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.3.2.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3.2.1.4
Mutltipliziere mit .
Schritt 4.3.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4.3.3
Kombiniere und .
Schritt 4.3.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4.3.5
Das Integral von nach ist .
Schritt 4.3.6
Vereinfache.
Schritt 4.3.7
Ersetze alle durch .
Schritt 4.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 5
Schritt 5.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 5.2
Vereinfache beide Seiten der Gleichung.
Schritt 5.2.1
Vereinfache die linke Seite.
Schritt 5.2.1.1
Vereinfache .
Schritt 5.2.1.1.1
Kombiniere und .
Schritt 5.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.1.2.2
Forme den Ausdruck um.
Schritt 5.2.2
Vereinfache die rechte Seite.
Schritt 5.2.2.1
Vereinfache .
Schritt 5.2.2.1.1
Kombiniere und .
Schritt 5.2.2.1.2
Wende das Distributivgesetz an.
Schritt 5.2.2.1.3
Kürze den gemeinsamen Faktor von .
Schritt 5.2.2.1.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.2.2.1.3.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.1.3.3
Forme den Ausdruck um.
Schritt 5.3
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 5.4
Multipliziere die linke Seite aus.
Schritt 5.4.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 5.4.2
Der natürliche Logarithmus von ist .
Schritt 5.4.3
Mutltipliziere mit .
Schritt 5.5
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.5.1
Teile jeden Ausdruck in durch .
Schritt 5.5.2
Vereinfache die linke Seite.
Schritt 5.5.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.5.2.1.2
Dividiere durch .
Schritt 6
Vereinfache die Konstante der Integration.