Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Addiere zu beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Stelle das Integral auf.
Schritt 2.2
Integriere .
Schritt 2.2.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.3
Vereinfache die Lösung.
Schritt 2.2.3.1
Schreibe als um.
Schritt 2.2.3.2
Vereinfache.
Schritt 2.2.3.2.1
Kombiniere und .
Schritt 2.2.3.2.2
Kürze den gemeinsamen Faktor von .
Schritt 2.2.3.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.2.2.2
Forme den Ausdruck um.
Schritt 2.2.3.2.3
Mutltipliziere mit .
Schritt 2.3
Entferne die Konstante der Integration.
Schritt 3
Schritt 3.1
Multipliziere jeden Ausdruck mit .
Schritt 3.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.4
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.4.1
Bewege .
Schritt 3.4.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.4.3
Addiere und .
Schritt 3.5
Vereinfache .
Schritt 3.6
Stelle die Faktoren in um.
Schritt 4
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 5
Integriere auf beiden Seiten.
Schritt 6
Integriere die linke Seite.
Schritt 7
Wende die Konstantenregel an.
Schritt 8
Schritt 8.1
Teile jeden Ausdruck in durch .
Schritt 8.2
Vereinfache die linke Seite.
Schritt 8.2.1
Kürze den gemeinsamen Faktor von .
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.2
Dividiere durch .
Schritt 9
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 10
Schritt 10.1
Schreibe die Gleichung als um.
Schritt 10.2
Vereinfache .
Schritt 10.2.1
Kombiniere Brüche.
Schritt 10.2.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 10.2.1.2
Vereinfache den Ausdruck.
Schritt 10.2.1.2.1
Mutltipliziere mit .
Schritt 10.2.1.2.2
Addiere und .
Schritt 10.2.2
Vereinfache den Nenner.
Schritt 10.2.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.2.2.2
Alles, was mit potenziert wird, ist .
Schritt 10.2.3
Dividiere durch .
Schritt 11
Schritt 11.1
Ersetze durch .