Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Vereinfache.
Schritt 1.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.2.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.2.1
Faktorisiere aus heraus.
Schritt 1.2.2.2
Faktorisiere aus heraus.
Schritt 1.2.2.3
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.4
Forme den Ausdruck um.
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.4
Vereinfache die Lösung.
Schritt 2.3.4.1
Schreibe als um.
Schritt 2.3.4.2
Vereinfache.
Schritt 2.3.4.2.1
Mutltipliziere mit .
Schritt 2.3.4.2.2
Mutltipliziere mit .
Schritt 2.3.4.2.3
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.4.2.3.1
Faktorisiere aus heraus.
Schritt 2.3.4.2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.4.2.3.2.1
Faktorisiere aus heraus.
Schritt 2.3.4.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.4.2.3.2.3
Forme den Ausdruck um.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.2
Vereinfache beide Seiten der Gleichung.
Schritt 3.2.1
Vereinfache die linke Seite.
Schritt 3.2.1.1
Vereinfache .
Schritt 3.2.1.1.1
Kombiniere und .
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.2.2
Vereinfache die rechte Seite.
Schritt 3.2.2.1
Vereinfache .
Schritt 3.2.2.1.1
Vereinfache jeden Term.
Schritt 3.2.2.1.1.1
Kombiniere und .
Schritt 3.2.2.1.1.2
Bringe auf die linke Seite von .
Schritt 3.2.2.1.2
Wende das Distributivgesetz an.
Schritt 3.2.2.1.3
Multipliziere .
Schritt 3.2.2.1.3.1
Mutltipliziere mit .
Schritt 3.2.2.1.3.2
Kombiniere und .
Schritt 3.2.2.1.3.3
Mutltipliziere mit .
Schritt 3.2.2.1.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.4
Vereinfache .
Schritt 3.4.1
Faktorisiere aus heraus.
Schritt 3.4.1.1
Faktorisiere aus heraus.
Schritt 3.4.1.2
Faktorisiere aus heraus.
Schritt 3.4.1.3
Faktorisiere aus heraus.
Schritt 3.4.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4.3
Vereinfache Terme.
Schritt 3.4.3.1
Kombiniere und .
Schritt 3.4.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.4.4
Bringe auf die linke Seite von .
Schritt 3.4.5
Kombiniere und .
Schritt 3.4.6
Schreibe als um.
Schritt 3.4.6.1
Faktorisiere die perfekte Potenz aus heraus.
Schritt 3.4.6.2
Faktorisiere die perfekte Potenz aus heraus.
Schritt 3.4.6.3
Ordne den Bruch um.
Schritt 3.4.7
Ziehe Terme aus der Wurzel heraus.
Schritt 3.4.8
Kombiniere und .
Schritt 3.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Vereinfache die Konstante der Integration.