Analysis Beispiele

Löse die Differntialgleichung. 3(dy)/(dx)=(4x^3-1)y^4
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3
Forme den Ausdruck um.
Schritt 1.3
Entferne unnötige Klammern.
Schritt 1.4
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Kombiniere und .
Schritt 2.2.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.3
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 2.2.3.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.3.2.2
Mutltipliziere mit .
Schritt 2.2.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.5
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.1.1
Kombiniere und .
Schritt 2.2.5.1.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.2.5.2
Vereinfache.
Schritt 2.2.5.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.3.1
Mutltipliziere mit .
Schritt 2.2.5.3.2
Kombiniere und .
Schritt 2.2.5.3.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.3.3.1
Faktorisiere aus heraus.
Schritt 2.2.5.3.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.3.3.2.1
Faktorisiere aus heraus.
Schritt 2.2.5.3.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.5.3.3.2.3
Forme den Ausdruck um.
Schritt 2.2.5.3.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.4
Wende die Konstantenregel an.
Schritt 2.3.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.1
Kombiniere und .
Schritt 2.3.5.2
Vereinfache.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 3.1.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3.2
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Multipliziere jeden Term in mit .
Schritt 3.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.3
Forme den Ausdruck um.
Schritt 3.3
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Schreibe die Gleichung als um.
Schritt 3.3.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Faktorisiere aus heraus.
Schritt 3.3.2.2
Faktorisiere aus heraus.
Schritt 3.3.2.3
Faktorisiere aus heraus.
Schritt 3.3.2.4
Faktorisiere aus heraus.
Schritt 3.3.2.5
Faktorisiere aus heraus.
Schritt 3.3.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.1
Teile jeden Ausdruck in durch .
Schritt 3.3.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.3.2.1.2
Dividiere durch .
Schritt 3.3.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.3.5
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.5.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.5.1.1
Schreibe als um.
Schritt 3.3.5.1.2
Schreibe als um.
Schritt 3.3.5.2
Ziehe Terme aus der Wurzel heraus.
Schritt 3.3.5.3
Potenziere mit .
Schritt 3.3.5.4
Schreibe als um.
Schritt 3.3.5.5
Jede Wurzel von ist .
Schritt 3.3.5.6
Mutltipliziere mit .
Schritt 3.3.5.7
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.5.7.1
Mutltipliziere mit .
Schritt 3.3.5.7.2
Potenziere mit .
Schritt 3.3.5.7.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3.5.7.4
Addiere und .
Schritt 3.3.5.7.5
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.5.7.5.1
Benutze , um als neu zu schreiben.
Schritt 3.3.5.7.5.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.5.7.5.3
Kombiniere und .
Schritt 3.3.5.7.5.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.5.7.5.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.5.7.5.4.2
Forme den Ausdruck um.
Schritt 3.3.5.7.5.5
Vereinfache.
Schritt 3.3.5.8
Schreibe als um.