Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Ordne die Faktoren neu an.
Schritt 1.2
Multipliziere beide Seiten mit .
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Mutltipliziere mit .
Schritt 1.3.2
Kürze den gemeinsamen Faktor von .
Schritt 1.3.2.1
Faktorisiere aus heraus.
Schritt 1.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.3.2.3
Forme den Ausdruck um.
Schritt 1.4
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Zerlege den Bruch in mehrere Brüche.
Schritt 2.3.2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.3
Kürze den gemeinsamen Faktor von .
Schritt 2.3.3.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.2
Dividiere durch .
Schritt 2.3.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.5
Das Integral von nach ist .
Schritt 2.3.6
Wende die Konstantenregel an.
Schritt 2.3.7
Vereinfache.
Schritt 2.3.8
Stelle die Terme um.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.2
Vereinfache beide Seiten der Gleichung.
Schritt 3.2.1
Vereinfache die linke Seite.
Schritt 3.2.1.1
Vereinfache .
Schritt 3.2.1.1.1
Kombiniere und .
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.2.2
Vereinfache die rechte Seite.
Schritt 3.2.2.1
Vereinfache .
Schritt 3.2.2.1.1
Wende das Distributivgesetz an.
Schritt 3.2.2.1.2
Vereinfache.
Schritt 3.2.2.1.2.1
Mutltipliziere mit .
Schritt 3.2.2.1.2.2
Mutltipliziere mit .
Schritt 3.3
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 3.4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4
Vereinfache die Konstante der Integration.