Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.2.1
Es sei . Ermittle .
Schritt 2.3.2.1.1
Differenziere .
Schritt 2.3.2.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.2.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.2.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.2.1.5
Addiere und .
Schritt 2.3.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.3
Vereinfache.
Schritt 2.3.3.1
Kombiniere und .
Schritt 2.3.3.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.3.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.5
Vereinfache den Ausdruck.
Schritt 2.3.5.1
Vereinfache.
Schritt 2.3.5.1.1
Kombiniere und .
Schritt 2.3.5.1.2
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.5.1.2.1
Faktorisiere aus heraus.
Schritt 2.3.5.1.2.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.5.1.2.2.1
Faktorisiere aus heraus.
Schritt 2.3.5.1.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.5.1.2.2.3
Forme den Ausdruck um.
Schritt 2.3.5.1.2.2.4
Dividiere durch .
Schritt 2.3.5.2
Wende die grundlegenden Potenzregeln an.
Schritt 2.3.5.2.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 2.3.5.2.2
Multipliziere die Exponenten in .
Schritt 2.3.5.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.5.2.2.2
Kombiniere und .
Schritt 2.3.5.2.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.7
Vereinfache.
Schritt 2.3.7.1
Schreibe als um.
Schritt 2.3.7.2
Vereinfache.
Schritt 2.3.7.2.1
Kombiniere und .
Schritt 2.3.7.2.2
Mutltipliziere mit .
Schritt 2.3.7.2.3
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.7.2.3.1
Faktorisiere aus heraus.
Schritt 2.3.7.2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.7.2.3.2.1
Faktorisiere aus heraus.
Schritt 2.3.7.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.7.2.3.2.3
Forme den Ausdruck um.
Schritt 2.3.7.2.3.2.4
Dividiere durch .
Schritt 2.3.8
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache jeden Term.
Schritt 4.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.2.2
Addiere und .
Schritt 4.2.3
Schreibe als um.
Schritt 4.2.4
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.2.5
Kürze den gemeinsamen Faktor von .
Schritt 4.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.5.2
Forme den Ausdruck um.
Schritt 4.2.6
Potenziere mit .
Schritt 4.2.7
Mutltipliziere mit .
Schritt 4.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5
Schritt 5.1
Ersetze durch .