Analysis Beispiele

Löse die Differntialgleichung. (dr)/(dt)=6t+sec(t)^2 , r(-pi)=5
,
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.4
Da die Ableitung von gleich ist, ist das Integral von gleich .
Schritt 2.3.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.1
Kombiniere und .
Schritt 2.3.5.2
Vereinfache.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.1
Wende die Produktregel auf an.
Schritt 4.2.1.1.2
Potenziere mit .
Schritt 4.2.1.1.3
Mutltipliziere mit .
Schritt 4.2.1.1.4
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Tangens im zweiten Quadranten negativ ist.
Schritt 4.2.1.1.5
Der genau Wert von ist .
Schritt 4.2.1.1.6
Mutltipliziere mit .
Schritt 4.2.1.2
Addiere und .
Schritt 4.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5
Setze für in ein und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze durch .