Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Ordne die Faktoren neu an.
Schritt 1.2
Multipliziere beide Seiten mit .
Schritt 1.3
Kürze den gemeinsamen Faktor von .
Schritt 1.3.1
Faktorisiere aus heraus.
Schritt 1.3.2
Kürze den gemeinsamen Faktor.
Schritt 1.3.3
Forme den Ausdruck um.
Schritt 1.4
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Vereinfache den Ausdruck.
Schritt 2.2.1.1
Kehre das Vorzeichen des Exponenten von um und ziehe es aus dem Nenner heraus.
Schritt 2.2.1.2
Vereinfache.
Schritt 2.2.1.2.1
Multipliziere die Exponenten in .
Schritt 2.2.1.2.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.1.2.1.2
Multipliziere .
Schritt 2.2.1.2.1.2.1
Mutltipliziere mit .
Schritt 2.2.1.2.1.2.2
Mutltipliziere mit .
Schritt 2.2.1.2.2
Mutltipliziere mit .
Schritt 2.2.2
Das Integral von nach ist .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.1.1
Es sei . Ermittle .
Schritt 2.3.1.1.1
Differenziere .
Schritt 2.3.1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.1.1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.1.1.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.1.1.5
Addiere und .
Schritt 2.3.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.2
Vereinfache.
Schritt 2.3.2.1
Mutltipliziere mit .
Schritt 2.3.2.2
Bringe auf die linke Seite von .
Schritt 2.3.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.4
Das Integral von nach ist .
Schritt 2.3.5
Vereinfache.
Schritt 2.3.6
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 3.2
Multipliziere die linke Seite aus.
Schritt 3.2.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 3.2.2
Der natürliche Logarithmus von ist .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 3.4
Vereinfache , indem du in den Logarithmus ziehst.