Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Klammere von aus.
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Stelle und um.
Schritt 1.2
Mutltipliziere mit .
Schritt 1.3
Mutltipliziere mit .
Schritt 1.4
Wende das Distributivgesetz an.
Schritt 1.5
Vereinfache.
Schritt 1.6
Vereinfache.
Schritt 1.7
Vereinfache.
Schritt 1.8
Kombiniere und .
Schritt 1.9
Vereinfache jeden Term.
Schritt 1.9.1
Kürze den gemeinsamen Faktor von .
Schritt 1.9.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.9.1.2
Forme den Ausdruck um.
Schritt 1.9.2
Kombiniere und .
Schritt 2
Es gilt . Ersetze für .
Schritt 3
Löse nach auf.
Schritt 4
Verwende die Produktregel um die Ableitung von nach zu finden.
Schritt 5
Ersetze durch .
Schritt 6
Schritt 6.1
Separiere die Variablen.
Schritt 6.1.1
Löse nach auf.
Schritt 6.1.1.1
Multipliziere .
Schritt 6.1.1.1.1
Kombiniere und .
Schritt 6.1.1.1.2
Potenziere mit .
Schritt 6.1.1.1.3
Potenziere mit .
Schritt 6.1.1.1.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.1.1.1.5
Addiere und .
Schritt 6.1.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.1.1.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 6.1.1.3.1
Teile jeden Ausdruck in durch .
Schritt 6.1.1.3.2
Vereinfache die linke Seite.
Schritt 6.1.1.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 6.1.1.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.1.1.3.2.1.2
Dividiere durch .
Schritt 6.1.1.3.3
Vereinfache die rechte Seite.
Schritt 6.1.1.3.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.1.1.3.3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.1.1.3.3.3
Vereinfache Terme.
Schritt 6.1.1.3.3.3.1
Kombiniere und .
Schritt 6.1.1.3.3.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.1.1.3.3.4
Vereinfache den Zähler.
Schritt 6.1.1.3.3.4.1
Faktorisiere aus heraus.
Schritt 6.1.1.3.3.4.1.1
Faktorisiere aus heraus.
Schritt 6.1.1.3.3.4.1.2
Faktorisiere aus heraus.
Schritt 6.1.1.3.3.4.1.3
Faktorisiere aus heraus.
Schritt 6.1.1.3.3.4.2
Wende das Distributivgesetz an.
Schritt 6.1.1.3.3.4.3
Mutltipliziere mit .
Schritt 6.1.1.3.3.4.4
Subtrahiere von .
Schritt 6.1.1.3.3.4.5
Subtrahiere von .
Schritt 6.1.1.3.3.5
Vereinfache den Ausdruck.
Schritt 6.1.1.3.3.5.1
Bringe auf die linke Seite von .
Schritt 6.1.1.3.3.5.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.1.1.3.3.6
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 6.1.1.3.3.7
Mutltipliziere mit .
Schritt 6.1.2
Ordne die Faktoren neu an.
Schritt 6.1.3
Multipliziere beide Seiten mit .
Schritt 6.1.4
Vereinfache.
Schritt 6.1.4.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 6.1.4.2
Mutltipliziere mit .
Schritt 6.1.4.3
Kürze den gemeinsamen Faktor von .
Schritt 6.1.4.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 6.1.4.3.2
Faktorisiere aus heraus.
Schritt 6.1.4.3.3
Faktorisiere aus heraus.
Schritt 6.1.4.3.4
Kürze den gemeinsamen Faktor.
Schritt 6.1.4.3.5
Forme den Ausdruck um.
Schritt 6.1.4.4
Kürze den gemeinsamen Faktor von .
Schritt 6.1.4.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.1.4.4.2
Forme den Ausdruck um.
Schritt 6.1.5
Schreibe die Gleichung um.
Schritt 6.2
Integriere beide Seiten.
Schritt 6.2.1
Integriere auf beiden Seiten.
Schritt 6.2.2
Integriere die linke Seite.
Schritt 6.2.2.1
Zerlege den Bruch in mehrere Brüche.
Schritt 6.2.2.2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6.2.2.3
Kürze den gemeinsamen Faktor von .
Schritt 6.2.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.3.2
Forme den Ausdruck um.
Schritt 6.2.2.4
Das Integral von nach ist .
Schritt 6.2.2.5
Wende die Konstantenregel an.
Schritt 6.2.2.6
Vereinfache.
Schritt 6.2.2.7
Stelle die Terme um.
Schritt 6.2.3
Integriere die rechte Seite.
Schritt 6.2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6.2.3.2
Das Integral von nach ist .
Schritt 6.2.3.3
Vereinfache.
Schritt 6.2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 7
Ersetze durch .
Schritt 8
Schritt 8.1
Bringe alle Terme, die einen Logarithmus enthalten, auf die linke Seite der Gleichung.
Schritt 8.2
Wende die Produktregel für Logarithmen an, .
Schritt 8.3
Multipliziere .
Schritt 8.3.1
Um Absolutwerte zu multiplizieren, multipliziere die Terme innerhalb jedes Absolutwerts.
Schritt 8.3.2
Kombiniere und .
Schritt 8.4
Kürze den gemeinsamen Faktor von .
Schritt 8.4.1
Kürze den gemeinsamen Faktor.
Schritt 8.4.2
Dividiere durch .