Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.3
Schreibe als um.
Schritt 2.3.4
Das Integral von nach ist .
Schritt 2.3.5
Da die Ableitung von gleich ist, ist das Integral von gleich .
Schritt 2.3.6
Vereinfache.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache die linke Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Vereinfache jeden Term.
Schritt 4.2.1.1.1
Der genau Wert von ist .
Schritt 4.2.1.1.2
Mutltipliziere mit .
Schritt 4.2.1.1.3
Der genau Wert von ist .
Schritt 4.2.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 4.2.1.2.1
Addiere und .
Schritt 4.2.1.2.2
Addiere und .
Schritt 5
Schritt 5.1
Ersetze durch .