Analysis Beispiele

Löse die Differntialgleichung. (dv)/(dt)=8/(1+t^2)+sec(t)^2 , v(0)=2
,
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.3
Schreibe als um.
Schritt 2.3.4
Das Integral von nach ist .
Schritt 2.3.5
Da die Ableitung von gleich ist, ist das Integral von gleich .
Schritt 2.3.6
Vereinfache.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.1
Der genau Wert von ist .
Schritt 4.2.1.1.2
Mutltipliziere mit .
Schritt 4.2.1.1.3
Der genau Wert von ist .
Schritt 4.2.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.2.1
Addiere und .
Schritt 4.2.1.2.2
Addiere und .
Schritt 5
Setze für in ein und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze durch .