Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.1.1
Teile jeden Ausdruck in durch .
Schritt 1.1.2
Vereinfache die linke Seite.
Schritt 1.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.1.2
Dividiere durch .
Schritt 1.1.3
Vereinfache die rechte Seite.
Schritt 1.1.3.1
Vereinfache jeden Term.
Schritt 1.1.3.1.1
Kürze den gemeinsamen Teiler von und .
Schritt 1.1.3.1.1.1
Faktorisiere aus heraus.
Schritt 1.1.3.1.1.2
Kürze die gemeinsamen Faktoren.
Schritt 1.1.3.1.1.2.1
Faktorisiere aus heraus.
Schritt 1.1.3.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.3.1.1.2.3
Forme den Ausdruck um.
Schritt 1.1.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2
Faktorisiere.
Schritt 1.2.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.2
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 1.2.2.1
Mutltipliziere mit .
Schritt 1.2.2.2
Potenziere mit .
Schritt 1.2.2.3
Potenziere mit .
Schritt 1.2.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.2.2.5
Addiere und .
Schritt 1.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.4
Faktorisiere aus heraus.
Schritt 1.2.4.1
Potenziere mit .
Schritt 1.2.4.2
Faktorisiere aus heraus.
Schritt 1.2.4.3
Faktorisiere aus heraus.
Schritt 1.2.4.4
Faktorisiere aus heraus.
Schritt 1.2.4.5
Mutltipliziere mit .
Schritt 1.3
Ordne die Faktoren neu an.
Schritt 1.4
Multipliziere beide Seiten mit .
Schritt 1.5
Kürze den gemeinsamen Faktor von .
Schritt 1.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.2
Forme den Ausdruck um.
Schritt 1.6
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Das Integral von nach ist .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Wende die grundlegenden Potenzregeln an.
Schritt 2.3.1.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 2.3.1.2
Multipliziere die Exponenten in .
Schritt 2.3.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.1.2.2
Mutltipliziere mit .
Schritt 2.3.2
Multipliziere .
Schritt 2.3.3
Vereinfache.
Schritt 2.3.3.1
Mutltipliziere mit .
Schritt 2.3.3.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.3.3.2.1
Bewege .
Schritt 2.3.3.2.2
Mutltipliziere mit .
Schritt 2.3.3.2.2.1
Potenziere mit .
Schritt 2.3.3.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.3.2.3
Addiere und .
Schritt 2.3.4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.7
Das Integral von nach ist .
Schritt 2.3.8
Vereinfache.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Bringe alle Terme, die einen Logarithmus enthalten, auf die linke Seite der Gleichung.
Schritt 3.2
Wende die Produktregel für Logarithmen an, .
Schritt 3.3
Um Absolutwerte zu multiplizieren, multipliziere die Terme innerhalb jedes Absolutwerts.
Schritt 3.4
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.5
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.6
Löse nach auf.
Schritt 3.6.1
Schreibe die Gleichung als um.
Schritt 3.6.2
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 3.6.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.6.3.1
Teile jeden Ausdruck in durch .
Schritt 3.6.3.2
Vereinfache die linke Seite.
Schritt 3.6.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.6.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.6.3.2.1.2
Dividiere durch .
Schritt 3.6.3.3
Vereinfache die rechte Seite.
Schritt 3.6.3.3.1
Vereinfache den Zähler.
Schritt 3.6.3.3.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.6.3.3.1.2
Vereinige die Zähler über dem gemeinsamen Nenner.