Analysis Beispiele

Löse die Differntialgleichung. e^(2x)(df)/(dx)+e^x=1
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Stelle die Faktoren in um.
Schritt 1.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.1.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Teile jeden Ausdruck in durch .
Schritt 1.1.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.3.2.1.2
Dividiere durch .
Schritt 1.1.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.3.1.1
Faktorisiere aus heraus.
Schritt 1.1.3.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.3.1.2.1
Multipliziere mit .
Schritt 1.1.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.3.3.1.2.3
Forme den Ausdruck um.
Schritt 1.1.3.3.1.2.4
Dividiere durch .
Schritt 1.2
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Kehre das Vorzeichen des Exponenten von um und ziehe es aus dem Nenner heraus.
Schritt 2.3.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.2.2.1.2
Mutltipliziere mit .
Schritt 2.3.2.2.2
Mutltipliziere mit .
Schritt 2.3.3
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1.1
Differenziere .
Schritt 2.3.3.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.3.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3.1.4
Mutltipliziere mit .
Schritt 2.3.3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.4.2
Kombiniere und .
Schritt 2.3.5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.7
Das Integral von nach ist .
Schritt 2.3.8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.9
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.9.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.9.1.1
Differenziere .
Schritt 2.3.9.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.9.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.9.1.4
Mutltipliziere mit .
Schritt 2.3.9.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.10
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.11
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.11.1
Mutltipliziere mit .
Schritt 2.3.11.2
Mutltipliziere mit .
Schritt 2.3.12
Das Integral von nach ist .
Schritt 2.3.13
Vereinfache.
Schritt 2.3.14
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.14.1
Ersetze alle durch .
Schritt 2.3.14.2
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.