Analysis Beispiele

Löse die Differntialgleichung. (du)/(dt)=e^(3u+10t) , u(0)=17
,
Schritt 1
Es sei . Ersetze für alle .
Schritt 2
Finde durch Differenzierung von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.1.3
Ersetze alle durch .
Schritt 2.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.4
Schreibe als um.
Schritt 2.5
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.7
Mutltipliziere mit .
Schritt 3
Ersetze durch .
Schritt 4
Setze die Ableitung wieder in die Differentialgleichung ein.
Schritt 5
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.1.2
Multipliziere beide Seiten mit .
Schritt 5.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.1.3.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1.1.2.1
Faktorisiere aus heraus.
Schritt 5.1.3.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.1.3.1.1.2.3
Forme den Ausdruck um.
Schritt 5.1.3.1.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.3.1.1.3.2
Forme den Ausdruck um.
Schritt 5.1.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.2.1.1
Wende das Distributivgesetz an.
Schritt 5.1.3.2.1.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.1.3.2.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.2.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.3.2.1.3.2
Forme den Ausdruck um.
Schritt 5.1.3.2.1.4
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.2.1.4.1
Bewege .
Schritt 5.1.3.2.1.4.2
Mutltipliziere mit .
Schritt 5.2
Multipliziere beide Seiten mit .
Schritt 5.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2
Forme den Ausdruck um.
Schritt 5.4
Schreibe die Gleichung um.
Schritt 6
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Integriere auf beiden Seiten.
Schritt 6.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Schreibe den Bruch mithilfe der Teilbruchzerlegung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Zerlege den Bruch und multipliziere mit dem gemeinsamen Nenner durch.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.1.1
Faktorisiere aus heraus.
Schritt 6.2.1.1.1.2
Faktorisiere aus heraus.
Schritt 6.2.1.1.1.3
Faktorisiere aus heraus.
Schritt 6.2.1.1.2
Bilde für jeden Faktor im Nenner einen neuen Bruch mit dem Faktor als Nenner und einem unbekannten Wert als Zähler. Da der Faktor im Nenner linear ist, setze eine einzelne Variable für den Zähler ein .
Schritt 6.2.1.1.3
Multipliziere jeden Bruch in der Gleichung mit dem Nenner des ursprünglichen Ausdrucks. In diesem Fall ist der Nenner gleich .
Schritt 6.2.1.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.1.4.2
Forme den Ausdruck um.
Schritt 6.2.1.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.5.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.1.5.2
Forme den Ausdruck um.
Schritt 6.2.1.1.6
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.6.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.6.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.1.6.1.2
Dividiere durch .
Schritt 6.2.1.1.6.2
Wende das Distributivgesetz an.
Schritt 6.2.1.1.6.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 6.2.1.1.6.4
Bringe auf die linke Seite von .
Schritt 6.2.1.1.6.5
Dividiere durch .
Schritt 6.2.1.1.7
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.7.1
Bewege .
Schritt 6.2.1.1.7.2
Stelle und um.
Schritt 6.2.1.1.7.3
Bewege .
Schritt 6.2.1.2
Schreibe Gleichungen für die Teilbruchvariablen und benutze sie, um ein Gleichungssystem aufzustellen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.2.1
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten von jeder Seite der Gleichung. Damit die Gleichung gilt, müssen äquivalente Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 6.2.1.2.2
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten der Terme, die nicht enthalten. Damit die Gleichung gilt, müssen die äquivalenten Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 6.2.1.2.3
Stelle das Gleichungssystem auf, um die Koeffizienten der Partialbrüche zu ermitteln.
Schritt 6.2.1.3
Löse das Gleichungssystem.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.3.1
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.3.1.1
Schreibe die Gleichung als um.
Schritt 6.2.1.3.1.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.3.1.2.1
Teile jeden Ausdruck in durch .
Schritt 6.2.1.3.1.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.3.1.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.3.1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.3.1.2.2.1.2
Dividiere durch .
Schritt 6.2.1.3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.3.2.1
Ersetze alle in durch .
Schritt 6.2.1.3.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.3.2.2.1
Kombiniere und .
Schritt 6.2.1.3.3
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.3.3.1
Schreibe die Gleichung als um.
Schritt 6.2.1.3.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.2.1.3.4
Löse das Gleichungssystem.
Schritt 6.2.1.3.5
Liste alle Lösungen auf.
Schritt 6.2.1.4
Ersetze jeden der Teilbruchkoeffizienten in durch die Werte, die für und ermittelt wurden.
Schritt 6.2.1.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.5.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 6.2.1.5.2
Mutltipliziere mit .
Schritt 6.2.1.5.3
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 6.2.1.5.4
Mutltipliziere mit .
Schritt 6.2.1.5.5
Bringe auf die linke Seite von .
Schritt 6.2.2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6.2.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6.2.4
Das Integral von nach ist .
Schritt 6.2.5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6.2.6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6.2.7
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.7.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.7.1.1
Differenziere .
Schritt 6.2.7.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 6.2.7.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.7.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.2.7.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.2.7.1.3.3
Mutltipliziere mit .
Schritt 6.2.7.1.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.7.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 6.2.7.1.4.2
Addiere und .
Schritt 6.2.7.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 6.2.8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.8.1
Mutltipliziere mit .
Schritt 6.2.8.2
Bringe auf die linke Seite von .
Schritt 6.2.9
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6.2.10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.10.1
Mutltipliziere mit .
Schritt 6.2.10.2
Mutltipliziere mit .
Schritt 6.2.10.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.10.3.1
Faktorisiere aus heraus.
Schritt 6.2.10.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.10.3.2.1
Faktorisiere aus heraus.
Schritt 6.2.10.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.2.10.3.2.3
Forme den Ausdruck um.
Schritt 6.2.11
Das Integral von nach ist .
Schritt 6.2.12
Vereinfache.
Schritt 6.3
Wende die Konstantenregel an.
Schritt 6.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 7
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1.1
Kombiniere und .
Schritt 7.1.1.2
Kombiniere und .
Schritt 7.2
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Multipliziere jeden Term in mit .
Schritt 7.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.1.1.2
Forme den Ausdruck um.
Schritt 7.2.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 7.2.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.1.2.3
Forme den Ausdruck um.
Schritt 7.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.3.1.1
Bringe auf die linke Seite von .
Schritt 7.2.3.1.2
Bringe auf die linke Seite von .
Schritt 7.3
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 7.4
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 7.5
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 7.6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.6.1
Schreibe die Gleichung als um.
Schritt 7.6.2
Multipliziere beide Seiten mit .
Schritt 7.6.3
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.6.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.6.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.6.3.1.2
Forme den Ausdruck um.
Schritt 7.6.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.6.4.1
Stelle die Faktoren in um.
Schritt 7.6.4.2
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 8
Gruppiere die konstanten Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Vereinfache die Konstante der Integration.
Schritt 8.2
Schreibe als um.
Schritt 8.3
Stelle und um.
Schritt 8.4
Kombiniere Konstanten mit Plus oder Minus.
Schritt 9
Ersetze alle durch .
Schritt 10
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 11
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Schreibe die Gleichung als um.
Schritt 11.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Mutltipliziere mit .
Schritt 11.2.2
Alles, was mit potenziert wird, ist .
Schritt 11.2.3
Mutltipliziere mit .
Schritt 11.2.4
Mutltipliziere mit .
Schritt 11.2.5
Mutltipliziere mit .
Schritt 11.2.6
Addiere und .
Schritt 11.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.1
Teile jeden Ausdruck in durch .
Schritt 11.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 11.3.2.1.2
Dividiere durch .
Schritt 12
Setze für in ein und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Ersetze durch .
Schritt 12.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1
Kürze den gemeinsamen Faktor.
Schritt 12.2.2
Forme den Ausdruck um.
Schritt 12.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.